LWR PHYSICS ANALYSES Np+Pu Assembly Designs Reduced Water Moderated Reactor ANL BNL ORNL

M.Todosow

AFCI Semi-Annual Review Meeting
August 28, 2003

Activities

- Pu and Np+Pu MOX designs for W-17x17 assembly [ANL,BNL]
- Np+Pu MOX designs for CE System-80 16x16 Assembly [BNL]
- Reduced Moderator Water Reactor (RMWR) rod-cell and assembly benchmarking [ANL,BNL]
- Investigating burning of Am and/or Cm as targets in W
 17x17 assembly [ORNL]

Mixed-Oxide Assembly Design for Series 1 Transmutation

John A. Stillman
Nuclear Engineering Division

AFCI Semi-Annual Meeting August 25-28, 2003

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Background

- Transmutation of actinides in existing U. S. reactors (LWRs) will reduce burden on systems just now in technology development
- Previous AFCI/AAA studies of mixed-oxide (MOX) fuel deployed in LWRs
 - In FY01, actinide mass flow rates for an ALWR with a full-core loading of MOX fuel were evaluated. Separated plutonium and plutonium + minor actinides (for added proliferation resistance) fabrication scenarios were considered.
 - In FY02, the focus was "deep burnup" in existing LWRs using a heterogeneous UO₂/MOX pin loading in a "retrofittable" PWR assembly design (CORAIL concept)
 - Complete destruction of self-generated plutonium achievable with multirecycling
 - Minor actinide recycling limited to a few passes due to fuel-handling issues
 - Local power peaking requires loading optimization
 - Secondary transmutation system necessary in order to complete plutonium and/or minor actinide destruction and realize significant repository benefit

Background

- Current study focused on MOX mono-recycling in partial-MOX cores in existing PWRs
 - MOX assembly pin loading optimized to reduce power peaking
 - Evaluated reactivity coefficients (e.g., void, control rod worth) and transmutation performance
- Source of transuranics assumed to be UO₂ burned to 50 GWd/MT + 10 years cooling; MOX fabrication for two separations scenarios considered
 - Separated reactor-grade plutonium
 - Largest portion of transuranics (TRU) in U. S. spent fuel stockpile is plutonium (~85%)
 - Loading separated plutonium maximizes destruction rate
 - Currently practiced in European MOX programs and intended for deployment in the U. S. weapons-grade plutonium disposition program
 - Plutonium+neptunium recycle in MOX
 - Postulated to provide additional proliferation resistance from 237 Np \rightarrow 233 Pa \rightarrow 312 keV g
 - Impact on assembly design and performance

Assembly and Core Design Parameters

- Fuel assembly design parameters similar to Framatome/COGEMA advanced Mark-BW assembly design; used for both UO₂ and MOX assemblies
 - Uniform enrichment in UO₂
 - Enrichment zoning of MOX pins to control power peaking at MOX/UO₂ interface
- Three-batch fuel management
- Target discharge burnup, 45GWd/MTHM
- Enthalpy-rise hot-channel factor $(F_{\wedge H}) < 1.55$ (typical)

Assembly size	17x17 pins
Number of fuel pins	264
Number of guide tubes (GT)	24
Number of instrumentation tubes (IT)	1
Fuel rod pitch (cm)	1.2598
Inter-assembly gap (cm)	0.08
Fuel pellet radius (cm)	0.4096
Clad inner radius (cm)	0.4178
Clad outer radius (cm)	0.4750
Smeared fuel density (g/cm ³) (pellet at 95% T.D., 1.2% pellet dishing)	9.88
Fuel mass (kg HM/assembly)	461.3
Zircaloy-4 clad density (g/cm³)	6.5
GT/IT inner radius (cm)	0.5715
GT/IT outer radius (cm)	0.6121
Specific power density (MW/MTHM)	33.7
Fuel temperature (°K)	900.0
Cladding temperature (°K)	581.0
Bulk coolant temperature (°K)	581.0
Coolant density (g/cm³)	0.72

MOX/UO₂ Color Set

- Heterogeneous MOX pin layout currently utilized in French MOX program; similar to layout planned for weapons-grade Pu disposition
- "Color set" of 1 MOX, 3 UO₂ assemblies utilized optimization of MOX pin loadings to minimize local power peaking
- WIMS8 lattice depletion code (method of characteristics) with 172-group JEF2.2 library; k_∞ = 1.035 approximates EOC state (3.5%∆k leakage)

MOX Enrichment Zoning Optimization

- Optimization of MOX assembly enrichment zoning performed using MOX/UO₂ color set evaluations
 - MOX pin power is affected by presence of UO₂ neighbors, but is relatively insensitive to neighboring UO₂ assembly enrichment and burnup
 - Numerous color sets
 evaluated with variations
 on high-, medium-, and
 low-enriched MOX pin
 Pu or Pu+Np loading
 - Ranked by largest peak power in MOX assembly during lattice depletion

Optimized MOX Pin Loading (%TRU/HM)								
High Medium Low								
Pu-MOX 9.0 6.0								
Pu+Np-MOX	9.5	6.0	4.0					

Summary of Loading Optimization Search for MOX Fabricated with Pu+Np

Evaluation of MOX Fuel Performance

- Calculations in present study were limited to lattice "color sets"
- Core environment simulated by surrounding MOX with fresh, once-, and twice-burned UO₂
 - MOX assembly depleted from fresh to discharge conditions over 3 "cycles"
 - UO₂ assemblies "shuffled" at beginning of each cycle (15 GWd/MT accumulated burnup)
 - Cases with and without loading 12 Gd₂O₃-poisoned pins (6 wt.%) in fresh UO₂ assembly considered

Beginning of Cycle State in Mixed MOX/UO2 Lattice

Evaluation of MOX Fuel Performance (cont'd)

- Power sharing between MOX and UO₂ assemblies relatively equal; discharge burnup difference between MOX and UO₂ < 6%
- Peak power occurs in fresh
 UO₂ assembly
 - Demonstrates effectiveness of MOX pin loading optimization efforts
 - Without burnable poisons, peak $F_{\Delta H}$ = 1.486 and 1.506 for Pu-MOX and Pu+Np-MOX cases, respectively
 - For case with burnable poisons in fresh UO_2 (shown at right), peak $F_{\Delta H}$ is well below typical limit of 1.55

Lattice k_{∞} and $F_{\Delta H}$ in Pu-MOX/UO₂ and Pu+Np-MOX/UO₂ Lattice

Reactivity Coefficient Estimates for Several Cores

All UO₂ core: 3.85 wt.%U-235

All Pu-MOX core: 9.5%Pu/HM

All Pu+Np-MOX core; 14.0%Pu+Np/HM

1/4 Pu-MOX core: 8.00%Pu/HM (avg) in MOX, 3.85 wt.%U-235

1/4 Pu+Np-MOX core: 8.35%Pu+Np/HM (avg) in MOX, 4.10 wt.%U-235

Coolant void coefficient (shown at left)

- Compared with all UO₂ core, void coefficient is 15-20% less negative for partial MOX core
- All Pu+Np-MOX core has positive void coefficient
- Control bank worth (shown below)
 - Estimates based on standard bank (B₄C material) inserted in 48 core locations
 - Control bank worth in UO₂ is 5% lower in mixed core
 - Control bank worth 30-50% lower when inserted in MOX assembly

Office of Science

U.S. Department

MOX Fuel Handling

- Decay heat generation in MOX assembly higher than UO₂, but not problematic
 - Five year-cooled spent UO₂ assemblies (3 kW/assembly) stored in dry casks
 - Decay heat primarily from Pu-238 α -decay ($t_{1/2}$ = 87.7 years)
- Neutron source primarily from Pu-238 (α ,n) and Pu-240 spont. fission
 - Neutron source slightly lower for Pu+Np-MOX due to displacement of plutonium by neptunium
- However, photons are the most significant dose contributor, as long as americium and curium are not multi-recycled (Taiwo, et al)

Fuel Handling Indices for Charged Assemblies (Reactor charge assumed to occur two years after separation)								
UO ₂ Pu-MOX Pu+Np-l								
		(3.2 wt.%U-235)	(8.00%Pu/HM)	(8.35%Pu+Np/HM)				
Mass (kg HM)		461.3 461.3		461.3				
Decay Heat (V	Vatts)	0.007	798	773				
Neutron	Neutron Sp. Fission		Sp. Fission 5.66E+03		1.56E+07	1.52E+07		
Source (n/s)	(α,n)	5.23E+02	2.24E+07	2.17E+07				

MOX Fuel Dose and Proliferation Resistance

- Recycling neptunium with plutonium increases source of higher energy photons due to ²³⁷Np → ²³³Pa → 312 keV γ
- Photon dose for MOX pins is 60% higher when neptunium is recycled
 - Pin clad causes less attenuation of higher energy γ's
 - Peak assembly dose at 1 meter is estimated to be < 8 mrem/hour
- Material contact dose is not increased by neptunium recycle
 - Dose is dominated by low energy photons from Pu-238, Am-241

Photon Emission Spectra for UO₂, Pu-MOX, and Pu+Np-MOX Assemblies

Photon Dose Rates (mrem/hour)								
Pu-MOX Pu+Np-MO								
Pellet surface (average)	4204	4144						
Pin surface (average)	80.1	130.1						
1 Meter from pin (peak)	0.27	0.43						

Transmutation Performance

- All UO₂-fueled core adds 250 kg TRU/year to spent fuel stockpile; 220 kg plutonium/year added to stockpile
- 1/4-Core MOX loading with mono-recycling significantly reduces production of transuranic nuclides per reactor unit
 - All TRU production reduced by ~55%
 - Plutonium production reduced by 70-80%; less reduction for Pu+Np-MOX due to Np-237 → Pu-238 production
- 30%-Core Pu-MOX loading nearly balances plutonium production in UO₂ with consumption in MOX

Spent Fuel Isotopics

	<i>UO</i> ₂]	Pu-MOX	Pu	+ <i>Np-MOX</i>
	50 GWd/MT +	Reactor	45.2 GWd/MT +	Reactor	43.0 GWd/MT +
Nuclide	10 yrs. cooling	Charge	10 yrs. cooling	Charge	10 yrs. cooling
Am241	4.669%	0.736%	7.237%	0.684%	6.610%
Am242m	0.019%		0.028%		0.026%
Am243	1.477%		2.111%		1.898%
Cm243	0.005%		0.008%		0.007%
Cm244	0.498%		0.740%		0.638%
Cm245	0.038%		0.117%		0.099%
Np237	6.663%		1.122%	7.146%	5.693%
Pu238	2.758%	3.136%	3.759%	2.912%	6.368%
Pu239	48.813%	56.380%	36.192%	52.350%	34.435%
Pu240	23.056%	26.626%	30.393%	24.723%	27.751%
Pu241	6.949%	7.290%	9.248%	6.769%	8.408%
Pu242	5.050%	5.832%	9.044%	5.416%	8.066%

- MOX recycle destroys transuranic nuclides, and also alters the character of the remaining TRU
 - Significant reduction of Pu-239 content
 - Increase in Pu-238 content, particularly with neptunium recycle
 - Elevated decay heat and neutron source may add proliferation resistance; this barrier is only associated with Pu in spent MOX fuel

Conclusions

- Enrichment zoning in MOX can be optimized to reduce power peaking
- Enthalpy-rise hot-channel factor $(F_{\Delta H})$ < 1.55 achieved in partial-MOX core for both separation/fabrication scenarios
- For Pu+Np-MOX, parasitic capture in neptunium increases uranium enrichment requirements
- Coolant void coefficient in partial-MOX core is 15-20% lower (less negative) than for all UO₂ core
- Compared with all UO₂ core, control rod worth is 5% lower if inserted in UO₂, and 30-50% lower if inserted in MOX
- Plutonium production and consumption is balanced with ~1/3-core loading of MOX; however, current spent fuel stockpile will support an aggressive mono-recycling campaign (i.e. in all units) for only ~15 years
- Neptunium recycling does not increase MOX contact dose: no additional intrinsic proliferation resistance at the separations or fabrication plants
- Neptunium recycling increases MOX pin dose rate by 60%, but assembly dose rate is still quite small (<8 mrem/hour at 1 meter)
- Conversion of recycled Np-237 to Pu-238 "denatures" the Pu vector in spent MOX fuel, which may make it less attractive to proliferators

WIMS8 Actinide Depletion Chain

Benchmarking of Np+Pu W Assembly Calculations @ BOL

- K-inf=1.31958 (WIMS)/1.3331<u>+</u>0.0003 (MCNP)
- % Difference in Pin-Power (1-σ errors in MCNP ~1%)

Box	Power	1.016(WIMS)	/1.021(MCNP)	0.855/0.845

0	2.3	1.6	0.0	0.4	0.1	0.0	-0.4	-2.3	-1.5	2.7	0.0	-1.3	-2.8	0.0	-0.7	0.5
-0.4	1.4	0.3	0.1	1.9	0.8	-0.3	-1.1	-1.7	0.6	-0.9	-0.8	-0.4	-0.2	-0.9	-0.1	0.6
-1.6	0.8	1.1	0.2	1.6	0.4	-1.1	-0.6	-0.1	1.6	-0.1	-1.5	2.2	2.3	-2.9	0.8	0.0
0.0	0.4	-1.2	0.0	0.0	-0.3	0.0	-1.1	-0.5	-2.6	2.4	0.0	-0.6	-0.9	0.0	-1.7	-1.2
-0.5	0.7	1.5	0.7	-1.3	-0.6	-2.0	0.8	0.1	-0.4	-1.2	-3.2	-1.2	0.5	-0.8	1.5	2.7
0.3	0.3	0.8	-0.3	-1.0	0.0	-0.8	-1.2	-0.9	0.4	0.7	1.3	0.0	-1.0	-0.4	1.1	1.2
0.0	0.0	-1.2	0.0	0.3	-0.5	0.3	0.0	-1.0	0.5	0.8	0.3	1.9	0.3	0.0	-0.6	1.1
-0.7	-0.3	-0.9	-0.5	0.9	0.7	0.9	-0.9	-0.4	-0.4	0.0	1.5	-1.2	-0.5	1.6	1.4	-0.2
0.7	0.6	0.7	0.9	1.4	0.4	0.9	-0.4	-0.9	0.5	1.7	-0.2	-0.7	0.6	-0.9	0.5	0.1
2.0	-0.4	0.2	0.0	1.0	0.8	0.5	0.5	0.2	0.2	0.1	-0.7	-0.5	0.9	0.0	0.0	-0.1
0.4	0.6	0.7	0.2	0.1	-0.5	0.8	0.2	-1.2	1.0	0.5	0.7	-0.4	-0.8	-1.1	1.1	-1.0
0.0	-0.4	-0.8	0.0	-0.9	-1.0	0.3	-0.1	-0.4	0.7	1.0	0.0	0.0	-0.3	0.0	-1.0	-0.9
-0.8	0.7	2.0	-1.0	-1.8	0.0	-0.4	0.6	0.7	0.5	1.0	1.0	0.0	-0.8	-1.0	-0.5	-0.9
-1.2	0.9	0.3	-0.5	-0.8	-0.6	0.1	0.8	1.0	1.2	0.6	0.3	-0.3	0.0	-2.2	-0.7	0.4
0.0	-0.3	-0.8	0.0	0.0	-1.7	0.0	-0.2	-0.1	-0.2	-0.5	0.0	-0.7	-0.6	0.0	-1.2	0.0
-0.9	0.2	-0.1	-1.0	0.9	-0.8	0.2	0.4	1.6	0.1	0.9	0.7	1.0	0.6	-0.3	0.9	0.6
-0.6	-0.4	0.7	-0.5	1.0	0.5	-0.8	0.0	1.5	1.7	1.0	-0.7	-0.1	1.5	-0.1	1.4	-0.1
0.0	-1.0	0.1	0.0	-0.4	-0.7	0.0	-0.1	0.1	1.2	-0.2	0.0	-1.3	0.1	0.0	-1.1	-0.6

CE System-80

- CE-System-80 Plants
 Designed for Full-Core
 MOX → option for AFCI
 - MCNP & DRAGON models developed and initial benchmarking completed
 - K-inf and power distributions in reasonable agreement
- Design Calculations Underway
 - Homogeneous and heterogeneous configurations
 - Performance with burnup
 - Reactivity coefficients

Reduced Moderator Water Reactor (RMWR)

- Hard spectrum of RMWR makes it interesting for AFCI (potential for transmutation)
- Neutronic and Thermal-Hydraulic Benchmarks proposed by JAERI
- One-group cross-sections from rodcell provided for D-factor analyses to CEA
- Calculations for neutronic benchmarks are underway
- Calculations for AFCI applications underway (BOC and burnup)

Fig. 5 Comparison of AHCLWR spectra for typical BWR and FBR

JAERI Rod-Cell Benchmark

Room Temperature; Moderator Void Fraction 0.5

	ENDF/	B-VI (DRAGON	J	EF2.2		
	MCNP4C DRAGON (69G/172 G) HELIOS (190 G) MC ² -II (230 G)			MCNP4C	WIMS8 (172 G)	
1.43cm Rod-Pitch	1.572 ± 0.001 (reference)			1.570 (-0.2)	1.536 ± 0.001 (-3.6)	1.548 (-2.4)
1.4cm Rod-Pitch	1.5918 <u>+</u> 0.0006	1.583/				

Significant MA reduction can be achieved in LWRs using MA Target strategy

Assumptions:

- 2000 MT/yr pocessing of 35-40yr-cooled LWR fuel
- Am/Cm processed into pins w/5% LEU or inert diluent
- Pu/Np processed into U-Pu-Np pins for 1/3 MOX cores
- 3yr irradiation w/3mo or 3yr cooldown between 18mo shuffle
- 35-40 yr cooldown (use oldest LWR SF first)

Results:

- 95% consumption of Am in target rods w/ inert diluent or 87% reduction for LEU diluent
- At least 2 cycles possible before needing higher enrichment
- Hence, keep MA out of repository for at least additional 75-80 yrs

LWR Irradiated MA Target Storage (35-40 y)

5-10 y Separations – Fuel Fab – Irradiation Period

1960s – 2015: LWR UO₂ Irradiations Only

2015 – 2055: LWR $\rm UO_2$ + LWR MOX 1st Cycle Irradiations 2055 – 2095: LWR $\rm UO_2$ + LWR MOX 2nd Cycle Irradiations

